H(t)=-16t^2+80t+32

Simple and best practice solution for H(t)=-16t^2+80t+32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+80t+32 equation:



(H)=-16H^2+80H+32
We move all terms to the left:
(H)-(-16H^2+80H+32)=0
We get rid of parentheses
16H^2-80H+H-32=0
We add all the numbers together, and all the variables
16H^2-79H-32=0
a = 16; b = -79; c = -32;
Δ = b2-4ac
Δ = -792-4·16·(-32)
Δ = 8289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8289}=\sqrt{9*921}=\sqrt{9}*\sqrt{921}=3\sqrt{921}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-79)-3\sqrt{921}}{2*16}=\frac{79-3\sqrt{921}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-79)+3\sqrt{921}}{2*16}=\frac{79+3\sqrt{921}}{32} $

See similar equations:

| (7x+1)+(20x-10)=180 | | N-1=11-2n | | 17+6x=4(1+x)+1 | | -6x-4x=1 | | 2(3x-7=+6=4x-3)2-2x) | | (3x+7)(4x-7)=0 | | (3c)-(2.5)=4.1 | | 5x+3x-15=2x+5 | | 6(8+m)=8-4m | | 2x+3x+5-15=5x | | 5(2y-7)=5 | | x+8/8=5 | | 400+10x=200+14x | | -7(-4x-1)=7+7x | | x2+250x+12500=0 | | 12+x=-48-8x | | -1(-1y+6)=-3 | | -5x-14=4x-5 | | 7u+7=1 | | (4x-1)+(4x-1)+(3x+2)+(3x+2)+(3x+2)=0 | | -3x=7=1 | | 7x-21=70 | | 2x+7=-3x-7 | | 2y+25=0.5 | | -8+8r+2r=16+7r | | 7y+7=19y-3+61 | | -x=4=-9 | | 7x=19x-84 | | 3x+2x=-12+6x+3x | | x+6=x*3 | | 6u+6=10 | | 26x+82=0 |

Equations solver categories